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Abstract 

The integrity of a PNT system can be monitored at three primary levels. The first one is 
the GPS/GNSS system level, which includes the signal structure/authentication and 
signal power/diversity which is beyond the scope from a user perspective. The second, 
the GPS/GNSS receiver level is of high interest and techniques include antenna design, 
receiver integrity monitoring (RAIM/ARAIM), other algorithms to handle various integrity 
events. The third level, the PNT system level, which is primarily about sensor integration; 
mainly, considering non-RF sensors. The classical GNSS/IMU integration is the very 
foundation of most navigation systems, which has been gradually extended to incorporate 
data from other sensors, such as optical imagery (vision), LiDAR, Radar, etc. These 
environment-based approaches provide observations of natural and man-made 
structures. For example, surface undulation, texture, buildings, roads, etc., can be used to 
both local and global navigation. Similarly, the magnetic field or gravity of the Earth, and 
then infrastructures that are not designed for navigation can also provide data that can 
support both relative and absolute navigation. In this study, the focus is on some specific 
cases of the second and third monitoring levels; in particular, some new approaches 
applicable to the third level. 

Until now the integrity monitoring, to identify natural and human induced threats to a PNT 
system has been addressed from a GNSS receiver or single platform PNT perspective. In 
other words, collecting all the data provided by sensors deployed on the platform, a 
sensor integration solution attempts to obtain the optimal navigation solution as well as to 
detect any anomalies that could impact the trust in the navigation solution. Since 
platforms hardly operate alone, just think about the congestion on road or crowds 
gathering at certain events or air spaces filled up with UAS, there is an opportunity to 
exploit the geometrical relationship of the platforms and thus to achieve a better 
navigation solution for all the platforms and additionally harness the opportunity to detect 
threats to the PNT solution. To investigate the potential of collaborative navigation, a 
major dataset was acquired in a simulated intersection area, where multiple vehicles, 
cyclists, pedestrians and UAS platforms simultaneously operated. This dataset provides 
essential data to simulate various threat scenarios on real data as well as to benchmark 
the performance of emerging methods. Sensors can be subjected to systematic denial (i.e., 
jamming) and deception (i.e., spoofing) attacks, starting with individual sensor attacks and ending in 
cross-sensor coordinated attacks, to evaluate the resilience of the PNT sensing platform and its 
underlying algorithms to deliberate malfeasance. 
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Introduction 

The investigation of various PNT threat and issues have relied on both simulated data as 
well as field data collected on actual traffic intersection setup at West Campus of the Ohio 
State University. Researchers used multiple vehicles equipped with sensing, including 
GPS/GNSS, IMU, LiDAR, and camera, and communication equipment, including UWB and 
local WiFi networks. At the selected test locations, data was acquired for several 
scenarios, and constituted the basis for assessing risks and vulnerabilities to an 
assortment of modes, and transportation contexts, and potential mitigation possibilities. 

A unique aspect of the main data acquisition campaign in May 2022 was to acquire multi-
modal data in the simulated intersection area. Ground vehicles, pedestrians and cyclists 
moved in the area while several UAS flew above them. This arrangement provided to 
extend the observation space from 2D to 3D, and thus, allowing to assess the challenges 
and benefits of the different platforms cooperating on the ground and in the air separately 
as well as jointly in the space. From a theoretical perspective, the platforms formed 2D 
and/or 3D geodetic networks, and the network geometry could be exploited to both 
improve joint navigation of the platforms and detect, and potentially mitigate, anomalies 
applied to either the GPS receiver or the entire PNT system.  

All the four ground vehicles, two cyclists, two pedestrians and the four UAS were 
equipped with GPS/GNSS receivers to provide accurate reference trajectories that were 
essential for performance evaluations. Then, IMUs, cameras, LiDAR sensors, UWB 
transceivers, smartphones, etc., were installed on the platforms in various configurations, 
which were primarily controlled by the availability of the sensors. In addition, a static 
network was installed at the simulated intersection area to allow communication and 
platform positioning based on typical road infrastructure. In addition, these reference 
locations were outfitted with visible targets allowing for image-based positioning and 
referencing primarily from air but also from the ground vehicles. During the one-week data 
acquisition campaign, multiple scenarios were considered, in terms of number of 
platforms participating or the motion pattern of the platforms, etc. The various data 
streams be subjected to systematic denial (i.e., jamming) and deception (i.e., spoofing) 
attacks, starting with individual sensor attacks and ending in cross-sensor coordinated 
attacks, to evaluate the resilience of the PNT sensing platform and its underlying 
algorithms to deliberate malfeasance. The entire dataset with the benchmark trajectory 
data is publicly available on GitHub. 

Another important dataset was acquired in the Bay Area by The University of Texas at 
Austin Radionavigation Laboratory. The focus was to provide representative data in urban 
environment to jointly assess GNSS and TRNS systems with respect to achieving 
assured navigation to support UAM. A UAS platform equipped with GNSS and TRNS 
receivers, IMU, camera, Radar and barometer acquired data. 
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2 Analysis, Simulation, and Experimental
Demonstration and Testing of PNT Threat Scenarios and
Risks 

Field experiments and demonstrations conducted to simulate PNT threats and scenarios 
are reported in this section. This activity was originally reported in [1-6]. 

2.1 Field Data Collection and Demonstration 

A massive field test, including multiple ground and UAS platforms was organized and 
executed on OSU West Campus, May 8-16, 2022 (Suleymanoglu et al., 2023). The main 
objective was to acquire test data to support research on GNSS and PNT system 
operational anomaly detection using collaborative navigation as well as to support other 
UTC research efforts to simulate threat and risk scenarios based on real data. The 
ground platforms included four vehicles, two cyclists and two pedestrians, and then four 
simultaneously flying UAS in the air. At the peak of experiments, the number of directly 
involved people was 22, including faculty, students, and staff. The photo of the core 
participants of the ground data collection with the OSU CyberCar is shown in Figure 1 

Figure 1 The team of ground platform-based data acquisition with the OSU CyberCar. 
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The data collection over eight days included deployment and surveying of ground targets, 
setting up an UWB network, ground vehicle data collection sessions, UAS rehearsal 
flights, and combined ground/air data acquisitions and a few repeat tests. The ground 
platforms and drones primarily moved/flew predefined trajectories and rich sensor data 
was collected. There was no intention to use collaborative navigation software in real-time 
due to lack of communication capabilities, and thus, everything was logged for 
postprocessing. 

A parking lot was selected for all these tests, suitable for multiple transportation 
modalities. The general pattern was to simulate traffic in a typical intersection area, where 
about 50% of traffic accidents happen. Figure 2 shows a remote parking lot of OSU West 
Campus from bird’s eye view, which was practically unused by OSU during the tests and 
allowed to fly UAS without significant restrictions. Within the parking lot an area about of 
50 m by 50 m was used for the main tests, where the central area of 30 m by 30 m was 
populated by signalized ground targets as well as UWB transceivers.  

Figure 2 Field data acquisition using multiple platforms, including four vehicles, two 
cyclists marked by blue, two pedestrians marked by green, and 12 static UWB anchors 
mounted on tripods; insert shows ground target with UWB transceiver installed on tripod 

above. 

During the data acquisition sessions, tripods were installed over the target locations and 
used to hold the UWB transceivers. The image-identifiable targets, see insert in Figure 2, 
provided ground control for imagery acquired from cameras mounted on UAS platforms 
and ground vehicles. The targets were surveyed with 1-2 cm horizontal and 2-3 cm 
vertical accuracy. In addition, the target locations were used to position 12 UWB 
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transceivers, forming the V2I network. Figure 3 shows the layout of the targets with the 
simulated lanes overlaid. The ranging measurements between the 12 nodes are shown 
with green lines, while the missing measurements, in particular, involving a 13th not 
properly working node, are marked in red. 

Figure 3 Target layout in the simulated intersection area with UWB V2I network. 

Typical sensor configurations for the mobile ground platforms are shown in Figure 4. Most 
platforms had similar sensor setups, but the type of sensors varied due to the lack of 
availability of so many identical sensors. For example, the GNSS receivers were from four 
manufacturers or there were about ten different imaging sensors used. 
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(a) (b) (c) 

Figure 4 Typical sensor configuration on the three ground platforms. 

2.2 Benchmark Dataset 

To support research not only in the CARMEN project but for the larger research community in 
transportation and navigation area, we have created the CONTEST (Collaborative pOsitioning 
and NavigaTion bEtween ground and uaS plaTforms) dataset, aiming at providing multiple data 
streams to test collaborative positioning approaches, involving both terrestrial and aerial 
platforms, based on the use of several sensors, such as Ultra-Wide Band (UWB) transceivers, 
cameras, LiDARs, GNSS, etc. (Masiero et al., 2023).  

Table 1 summarizes the platforms and sensors used during the data acquisition campaign and 
lists the data shared in the CONTEST dataset, which is available for download at the following 
link: https://github.com/3DOM-FBK/Collaborative_Navigation. Note that shared data have been 
created from raw data through some basic pre-processing and formatting operations, mostly 
aiming at improving the data usability.  
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Table 1 Summary of the platforms and sensors used during the data acquisition 
campaign, and the collected data streams that are shared in the CONTEST dataset 

(available at https://github.com/3DOM-FBK/Collaborative_Navigation). 

Static 
Infrastructure  

Sensor 
Data 
Acquired 

Shared Data 

12 UWB Pozyx (anchors) - reference positions 

LiDAR: Velodyne VLP16 raw profiles raw profiles with timestamp 

Platforms Onboard Sensor Data 
Acquired 

Shared Data 

UAS1 

(DJI Phantom 4Pro 
RTK) 

UWB: Pozyx ranges ranges wrt static and moving agents 

embedded GNSS positions reference trajectory 

embedded camera images images 

UAS2 

(DJI Phantom 4Pro) 

UWB: Pozyx ranges ranges wrt static and moving agents 

GNSS: Emlid M2 positions reference trajectory 

embedded camera images images 

UAS3 

(DJI Phantom 4Pro) 

UWB: Pozyx ranges ranges wrt static and moving agents 

GNSS: Emlid M2 positions reference trajectory 

embedded camera images, videos images, videos 

UAS4 

(DJI Matrice 210) 

UWB: Pozyx ranges ranges wrt static and moving agents 

embedded GNSS positions reference trajectory 

Camera: DJI FC6310S Images, videos images, videos 

Car 0 

(GPSVan) 

UWB: Pozyx ranges ranges wrt static and moving agents 

GNSS: Leica GS25, Septentrio PolRx5 positions reference trajectory from GNSS and 
IMU integration and correction IMU: Honeywell H764G inertial information 

LiDAR Velodyne VLP16 raw profiles  raw profiles with timestamp 

Car 1 

(Honda CRV) 

UWB: Pozyx ranges ranges wrt static and moving agents 

GNSS: Topcon HyperVR, Novatel 
PwrPak7 

positions reference trajectory from GNSS and 
IMU integration and correction 

IMU: SPAN-IGM-S1 inertial information 

LiDAR Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: Sony Alpha 6000 video video 

Car 2 

(Honda Pilot) 

UWB: Pozyx (anchor) - ranges wrt moving agents 

GNSS: Topcon HyperVR, Novatel 
PwrPak7 

positions reference trajectory from GNSS and 
IMU integration and correction 

IMU: Epson G320 MEMS (built-in) inertial information 

LiDAR: Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: GoPro HERO5  video video 

Car 3 

(CyberCar) 

UWB: Pozyx ranges ranges wrt static and moving agents 

GNSS: Topcon HyperVR, Novatel 
PwrPak7 

positions reference trajectory from GNSS and 
IMU integration and correction 

IMU: Epson G320 MEMS (built-in) inertial information 

LiDAR: Velodyne VLP16 raw profiles  raw profiles with timestamp 

Camera: GoPro HERO5 video video 

Pedestrian 1 GNSS: Topcon Hyper VR positions reference trajectory 

Pedestrian 2 GNSS: Topcon Hyper VR positions reference trajectory 

Cyclist 1 GNSS: Topcon Hyper VR positions reference trajectory 

Cyclist 2 GNSS: Topcon Hyper VR positions reference trajectory 
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The CONTEST dataset aims at providing a common benchmark to research groups 
interested in this topic, and thus, supports testing and comparative performance 
evaluation of developed collaborative multi-sensor positioning approaches. The presented 
dataset is based on measurements acquired from platforms that were jointly moving in 2D 
and 3D space, which makes this benchmark unique and extremely useful. More 
specifically, the dataset contains data collected by both ground and aerial vehicles, 
acquiring reference (GNSS-based) trajectories, visual data, either as images or videos, 
LiDAR measurements and UWB ranges, mimicking both V2I and V2V communication.  

2.3 Creating Reference Solutions 

A key aspect of the data acquisition campaign was to obtain highly accurate GNSS-based 
platform trajectory data, which can be used as reference and also for various simulation 
scenarios. The ground platforms and drones primarily moved/flew predefined trajectories 
and rich sensor data was collected. The general pattern was to simulate traffic in a typical 
intersection area, where about 50% of traffic accidents happen. In these tests, there was 
no intention to use collaborative navigation software in real-time due to lack of reliable 
communication capabilities, and thus, everything was logged for post-processing. Figure 
2 shows a test where, except from the UAS, all other platforms are visible. 

Since the entire field campaign was conducted in open sky environment under good 
weather conditions in a low RF interference and multipath area, GPS/GNSS signal 
reception was excellent. Each of the four ground vehicles had two and the others one 
geodetic grade GNSS receiver each, while the drones had medium-grade multi-frequency 
receivers. Consequently, for the all the platforms highly accurate trajectories were 
computed. For two vehicles with high-quality IMUs, the platform attitude was also 
obtained. Unfortunately, for UAS 4 there was an unexpected hardware error, and only 
code-based accuracy was achieved. Table 2 Precision of post-processed GNSS/INS and 
GNSS solutions. list the precision of the trajectory estimation; note that the internally 
estimated precision is generally optimistic.  

Table 2 Precision of post-processed GNSS/INS and GNSS solutions. 

Platform 
Solution 

Type 
Position [m] 

East North Height 

GPSVan GNSS/INS 0.001 0.001 0.003 

Pilot GNSS/INS 0.001 0.001 0.003 

CRV GNSS 0.007 0.006 0.013 

CyberCar GNSS 0.007 0.006 0.013 

Cyclist 1 GNSS 0.007 0.006 0.012 

Cyclist 2 GNSS 0.007 0.006 0.013 

Pedestrian 1 GNSS - - -

Pedestrian 2 GNSS - - -

UAS1 GNSS 0.007 0.006 0.013 

UAS2 GNSS 0.007 0.007 0.014 

UAS3 GNSS 0.007 0.007 0.014 

UAS4 - - - -
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The reference trajectories for the four drones and four vehicles are visualized in  Figure 5. 
One drone, trajectory marked by yellow was in a fixed position to provide an overview 
image coverage of the entire area and thus allowing for visual tracking of all the other 
platforms, see Fig. 2.5a. The drone at mid-altitude, marked by blue flew a typical remote 
sensing data acquisition pattern. Finally, the two drones at the same lower altitude were 
flying close to each other to mimic delivery by drone situation. In Figure 5b, the 
trajectories of the four ground vehicles are added, showing the typical crossing and 
turning motion at intersection areas. 

(a) Solutions for four drones 
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(b) Solutions for four drones and four vehicles 

Figure 5 Reference GNSS solutions for four drones and four vehicles. 

2.4 UWB Sensor Data Evaluation 

UWB data was first used for creating collaborative navigation solutions, and thus, the 
quality of this dataset was thoroughly assessed. There are two key aspects of the UWB 
data streams: (1) the number of ranges observed, and then (2) the data rate of range 
measurements. Note that on the sensor level multiple measurements are performed to 
obtain a valid range, and thus, there is a ratio parameter to indicate the successful vs 
attempted measurements. 

Figure 6 shows an example of ranges collected by four cars and four UASs over a 40-s 
time interval. From the figure it is quite clear that ground vehicles collected more ranges 
on average with the only exception of Car 2, which, differently from the others, acted as 
an UWB anchor, hence it was only involved in V2V ranging. 
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Figure 6 Range measurements of four cars and four UASs in a 40-s time interval. 

Table 3 UWB ranging distribution (percentage with respect to the total number of UWB 
measurements). shows the distribution of the collected UWB ranges in terms of V2I and 
V2V measurements, distinguishing whether the measurements were collected from 
ground vehicles to infrastructure (G2I), aerial platforms vs infrastructure (A2I), or, in the 
V2V case, among the different combinations of ground (G) and aerial (A) platforms. 

Table 3 UWB ranging distribution (percentage with respect to the total number of UWB 
measurements). 

Range Category 
Distribution of range 
measurements [%] 

G2I 42.7 
V2I A2I 19.5 

V2I total 62.2

 G2G 9.1 
A2A 9.5 

V2V G2A 6.8 
A2G 12.4 

V2V total 37.8 

Table 4 UWB ranging data acquisition rate [range measurements per second]. reports the 
UWB statistics for what concerns the four cars and four UASs over a 1500-s time interval 
(the first part of the main test). A more comprehensive visualization of the number of 
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measurements per second is shown in Figure 7. Excluding Car 2, ground vehicles 
collected around 2.5 V2I ranges per second, whereas aerial platforms averaged only 
about one measurement per second. Interestingly, the average number of V2V ranges 
per second was approximately constant for all platforms (about 2). 

Table 4 UWB ranging data acquisition rate [range measurements per second]. 

Platform Mean Std.dev. Max 

UAS1 2.4 1.9 12 
UAS2 2.4 1.7 12 
UAS3 3.4 2.5 14 
UAS4 3.8 2.4 15 
Car 0 4.7 2.5 15 
Car 1 4.9 2.5 15 
Car 2 1.4 1.2 8 
Car 3 5.5 2.9 19 

Figure 7 Comparison of V2I and V2V UWB measurements per second on the cars and 
UASs. 

While the V2V ranges are quite evenly distributed, the inhomogeneous distribution of the 
V2I ranges, shown in Figure 7, needs more in-depth investigation. Figure 8 shows that 
certain anchors have a much lower contribution to the collected ranges, for example, the 
one on the top-left of the figure. 
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Figure 8 Distribution of the collected V2I ranges among the anchors. 

However, according to the heat map of the ground vehicle locations, shown in Figure 9, 
this is probably simply due to the fewer vehicle trajectories close to such anchors. 
Furthermore, the lower amount of V2I ranges for the aerial platforms with respect to the 
ground ones shall be explained by the average distance of such platforms from the 
anchors. Indeed, as reported in Masiero et al. (2021), the UWB ranging success rate 
decreases with the distance between the involved devices. Moreover, comparing the 
ground and aerial platform heat maps in Figure 9 and Figure 10, it is quite clear that on 
average UASs flew at larger distances from the anchors than the ground vehicles. This is 
also confirmed by a comparison between UAS4 and the other UASs, as differently from 
the others, UAS4 flew at a higher altitude, at about 40 m from the ground vs 20 m for the 
others, but stayed at an almost constant horizontal location, approximately in the middle 
of the region covered by the anchors (white spot approximately in the center of Figure 
10). This led to a higher V2I ranging success rate with respect to the other UASs, as 
shown in Figure 7. 
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Figure 9 Heat map of ground vehicle tracks during the first part of the test; color 
visualization is saturated to the largest value in the color bar, and UWB anchors are 

represented as blue disks. 
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Figure 10 Heat map of UAS tracks during the first part of the test; color visualization is 
saturated to the largest value in the color bar, and UWB anchors are represented as blue 

disks. 

2.5 Collaborative Navigation 

The concept of collaborative navigation (CN) represents the next level of generalization of 
the sensor integration by integrating sensors deployed on multiple platforms (Lee et al., 
2012; Buehrer et al., 2018). The two fundamental conditions of CN are the availability of 
inter-platform range and/or angular measurements and then communication to allow data 
sharing in real-time. There are several variations of the concept as well as their 
implementations. The key idea is that the platforms, aka nodes, form a geodetic network, 
and by using the inter-platform range/angular measurements, the relative positions can 
be estimated, i.e., the platform can be positioned in an arbitrary local coordinate system. 
The strength of the geometry of the network can be exploited in several ways, such as 
distributing accurate position information to nodes that have no or weak GNSS data, or 
detecting anomalies of individual node navigation solutions, such as jamming and 
spoofing, (Wang et al., 2022) or degraded range measurements, e.g., non-line-of-sight 
(Wang and Jiang, 2021). 
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A basic CN solution uses only inter-nodal range measurements either with or without 
other sensor data. In the former case, the ranges are used in the navigation filters, 
providing additional constraints. In the second case, the ranges are used to create a 
geodetic network (Ladai and Toth, 2022) and then the relative position information can be 
used as input to the individual or joint (federated) navigation filter. The main methods to 
solve this problem include: 

 Static geodetic approaches, such as ordinary least squares (OLS), weighted least 
squares (WLS), etc. (Wang, 2023) 

 Sequential estimators, such as conventional navigation filters (extended Kalman 
filters, particle filters, multiple mode filters, etc.), batch approaches (least squares 
“fitting” methods, solvers, SLAM, etc.). 

In the first round, the UWB-based range measurements were considered as these data 
streams are available from almost all platforms; including ground vehicles, drones, and 
the static network. Since UWB technology uses extremely low power, the success rate of 
valid measurement fluctuates over a large range, depending on the environmental 
conditions. Figure 11 shows range measurements acquired for one and half hours by the 
UWB transceiver installed on the main vehicle, GPSVan and by half hours by UAS 4. The 
horizontal lines indicate when there was no motion, so ranges should not change. The 
areas with changing ranges represent three data collection sessions. In both static and 
moving state, there are outlier ranges, but the number of larger outliers is bigger when the 
sensor platform is in motion. 
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(a) Typical UWB range measurements from UAS4 
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(b) Typical UWB range measurements from the GPSVan 

Figure 11 Typical UWB range data acquired by two platforms. 

A collaborative navigation-based solution for the four ground vehicles is similar to the 
reference solution in Figure 5b; at the scale of the figure, there is no visually noticeable 
difference. The three vehicles were positioned by using the infrastructure UWB system 
and the GPSVan was localized by both the ranging data from the three other vehicles and 
the infrastructure UWB transceivers. Figure 12 shows a few samples from the solution, 
where circles show that range measurements were available between the GPSVan and 
the infrastructure UWB transceivers. Figure 12a shows the GPSVan outside of the UWB 
network, and while there are six circles, they intersect at small angles, so the positioning 
accuracy is not good. Note that another vehicle is also outside. Figure 12b depicts the 
case when the GPSVan is along the boundary of UWB network. There are only three 
circles, and the three vehicles are inside, yet they are almost along a line, so the accuracy 
is still not good. Figure 12c shows a good case when all vehicles are inside of the UWB 
network and there are six circles with several near perpendicular intersections, resulting 
in an accurate position. Figure 12d represents a case which is similar to Figure 12b, 
except there are four circles with better intersections, resulting in good accuracy. In 
general, the positioning accuracy is in the few-decimeter range, which means the 
detection of PNT anomalies larger than one meter can be reliably detected. 
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(a) (b) 

(c) (d) 

Figure 12 Collaborative solution at four epochs. 

The vertical bars on the right in Figure 12 show the internally estimated positioning 
precision; Figs. a-b depict poor performance, while c-d demonstrate good performance 
under favorable conditions. Figure 13 shows the estimated positioning precision of an 
about 1-minute run; the horizontal axis is in epochs and the vertical is in m. This 
decimeter-level positioning performance is clearly adequate for transportation 
applications; even for lane-following it is suitable. 
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Figure 13 Internally estimated positioning precision in 2D. 
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3 Highly Automated Vehicle Threat Testing 

3.1 Introduction 

Terrestrial radionavigation systems (TRNS) provided the primary navigation infrastructure 
before GPS was introduced, and then they have seen a decline as GPS became of the 
primary workhorse of navigation worldwide. Given the increasing vulnerability of 
GPS/GNSS, there is a renewed interest in TRNS, using state-of-the-art technologies. In 
cooperation with NextNav, using their Metropolitan Beacon System (MBS), dataset was 
acquired to support performance testing and assessing resilience capabilities against 
possible threat scenarios in urban environment.  

Central to the transportation revolution that will be driven by urban air mobility (UAM) is the 
problem of robust and secure navigation. Urban environments offer more challenges, such 
as interference and multipath, when compared to open sky conditions. As the only 
positioning system that offers absolutely referenced meter-level accuracy with global 
coverage, GNSS will no doubt play a significant role in this revolution. If strengthened 
against jamming and spoofing, carrier-phase differential GNSS (CDGNSS), coupled with 
low-cost inertial sensing, will be nearly sufficient for position, velocity, and timing (PVT) 
needs. But nearly sufficient is insufficient: it is not enough for a UAM PVT solution to offer 
decimeter-accurate positioning with 99% availability, or even 99.9% availability. UAM will 
demand that its navigation systems offer dm-accurate positioning with integrity risk on the 
order of 10−7 for a meter-level alert limit and availability with several more 9s than 99.9% 
(Tenny and Humphreys, 2022). This effort introduced a method of tightly coupling carrier-
phase-differential GNSS (CDGNSS) with TRNS signals and data to build a robust 
positioning, velocity, and timing (PVT) solution for UAM, which requires precise and robust 
PVT solutions that are resilient to interference and jamming. Reference data was acquired 
in cooperation with NextNav. This activity was originally reported in [7]. 

3.2 Data Acquisition 

The test data was acquired in Bay Area, where NextNav operates a network of TRNS 
transmitters, see Figure 14. The aerial test vehicle from UT Radionavigation Laboratory 
was a DJI Matrice 300 multi-rotor vehicle with a variety of sensors mounted on the vehicle, 
including a dual antenna GNSS L1 receiver, a NextNav TRNS receiver, and a Bosch 
BMX055 consumer grade IMU, see Figure 15. In addition, a GNSS reference receiver was 
placed near the planned flight location. The acquired dataset contains dual antenna GNSS 
L1 double differenced pseudoranges, carrier phase measurements, TRNS position 
solution, TRNS pseudoranges, calibrated barometric pressure sensor measurements, and 
inertial sensor measurements. The reference and aerial test vehicle GNSS receivers 
utilized the RNL’s RadioLynx, GNSS front end with a 5 MHz bandwidth, and was processed 
with the PpRx software-defined GNSS receiver (SDR). 
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Figure 14 Map of the location of the TRNS transmitters visible to the TRNS receiver during 
flight and the flight location in red. 

Figure 15 UT RNL’s aerial test vehicle, carrying two single frequency GNSS antennas, a 
radar sensor, TRNS receiver, pressure sensor, and three cameras. 

A data collection flight was performed in an area where NextNav TRNS signals are 
available (Figure 16). The flight path was limited to 80 meters by 100 meters in the east 
and north directions due to constraints on communication range with the UAS. Note that 
FAA regulations limited the altitude ceiling to 121 meters above ground level. The full flight 
path shown in Figure 16. The recorded dataset includes approximately 900 seconds of 
data at different altitudes and varying vehicle velocities. 
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Figure 16 Flight path of the aerial vehicle during data collection flight. The position is 
shown in meters from the phase center of the reference receiver antenna in the ENU 

frame. 

3.3 Results of analyzing TRNS pseudoranges 

The TRNS pseudoranges were analyzed using the collected dataset and the tightly-
coupled version of PpEngine. The estimated TRNS transmitter clock offsets (Figure 17) 
were observed to determine the behavior of the TRNS transmitter clocks. The estimated 
transmitter clock offsets were found to be non-zero and unique to each transmitter. The 
largest difference between transmitter clock offsets indicates that the transmitter clocks 
differ by as much as 30 nanoseconds. These estimated TRNS transmitter clock offsets are 
not fully observable meaning part of the estimate may be due to the TRNS receiver clock 
offset. The TRNS pseudorange innovations (Figure 18) were examined and found to be 
nearly zero-mean and white, demonstrating that the pseudorange errors were well 
modeled. This shows that despite the lack of full observability of the clock offsets, the 
location of the TRNS receiver can still be estimated. 

22 



 

 

 

 

 
 

 

 
 

 

 
 
 

 
 

 
 

 
 

 
 

Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS 

Figure 17 Estimated TRNS transmitter clock offset of the TRNS transmitters in meters. 

Figure 18 TRNS pseudorange innovations in meters. 

3.4 Artificial GNSS Outage 

A long scale GNSS outage experiment was preformed to represent a worst-case scenario 
of a full loss of GNSS availability. The experiment was performed for both loosely- and 
tightly-coupled estimators. The loosely-coupled solution (Figure 19) shows that during a 
long duration GNSS outage a bias between the CDGNSS position and TRNS position 
arises. During this outage the estimated error standard deviation was 1 meter in both the 
east and north directions. The experiment was repeated utilizing the tightly-coupled 
estimator (Figure 19). During the outage the estimated error standard deviation was 2 
meters in both the east and north directions. The tightly-coupled estimator has a similar 
offset from the CDGNSS position solution showing that there is an unknown source of error 
in the TRNS network causing the offset of the TRNS position solution. 
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Figure 19 Left: The blue is the loosely-coupled TRNS position solution during period of 
artificial GNSS outage. The orange is the CDGNSS position. Right: The blue is the tightly-
coupled TRNS position solution during period of artificial GNSS outage. The orange is the 

CDGNSS position. 

3.5 Intermittent Artificial GNSS Outages 

A UAM vehicle will likely only face interference or a loss of GNSS availability for a portion of 
the flight. A test of intermittent GNSS availability was performed by artificially suppressing 
GNSS measurements from entering the estimator for a duration of 30 seconds with a 60 
second period. The estimator was first tested with a series of intermittent GNSS outages 
without the addition of the TRNS measurements (Figure 20). The error grows in the 
position during the outage is exponential. The exponential error growth is cause by drift in 
the consumer grade inertial sensor. During the short duration outage, the 1-σ uncertainty 
grew to 28 meters in the east and north directions, and 8.4 meters in the Up direction. The 
maximum error during the test was found to be 166.7 meters, demonstrating the need for 
the addition of TRNS to constrain the error growth during GNSS outages. 

A UAS will likely only face interference or a loss of GNSS availability for a portion of the 
flight. A test of intermittent GNSS availability was performed by artificially suppressing 
GNSS measurements from entering the estimator for a duration of 30 seconds with a 60 
second period. The estimator was first tested with a series of intermittent GNSS 
outages without the addition of the TRNS measurements (Figure 20). 

The error grows in the position during the outage is exponential. The exponential error 
growth is caused by drift in the consumer grade inertial sensor. During the short duration 
outage, the 1-σ uncertainty grew to 28 meters in the east and north directions, and 8.4 
meters in the up direction. The maximum error during the test was found to be 166.7 
meters, demonstrating the need for the addition of TRNS to constrain the error growth 
during GNSS outages. 
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Figure 20 Intermittent periods of artificial GNSS and TRNS outage. The solid blue shows 
the position errors in meters in the ENU frame due to the inertial sensor. The shaded region 

is the 1-σ uncertainty. 

The intermittent GNSS outages test was then preformed with the addition of TRNS 
measurements. The same interval was used so the tightly-coupled and loosely-coupled 
estimators could be directly compared to one another. For both tightly- and loosely-coupled 
estimators the addition of TRNS measurements served to constrain the error growth during 
GNSS outages (Figure 21). 

Figure 21 Position errors in meters in the ENU frame during intermittent periods of artificial 
GNSS outages. The solid line is the error of the position estimate, and the shaded region is 
the 1-σ uncertainty. The blue shows the tightly-coupled estimator while the red shows the 

loosely-coupled estimator. 

The loosely-coupled estimator 1-σ error uncertainty grew to 1 meter in each direction. In 
contrast, the tightly-coupled estimator 1-σ error uncertainty grew to 1.5 meter in the east 
and north directions while only growing to 1 meter in the Up direction. The tightly-coupled 
estimator had a larger uncertainty due to the unknown TRNS transmitter clock offsets. Both 
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estimators had very similar behavior in the Up direction due to the poor vertical dilution of 
precision causing the position estimate in the Up direction to be heavily weighted by the 
pressure measurements. 

In summary, TRNS provides a backup PNT source that can be utilized during GNSS 
outages to constrain the error growth of an inertial sensor. This study demonstrates the first 
use of tightly-coupled CDGNSS, TRNS, and inertial sensing to provide a robust PVT 
solution on an aerial vehicle. An innovations-based measurement exclusion technique 
mitigates the impact of TRNS multipath errors and pressure anomalies. Based on a 
comparative analysis of loose- and tight-coupling on a UAS during simulated GNSS 
outages, it was found that during short duration GNSS outages the 1-σ position error in the 
east and north directions were 1 meter and 1.5 meters for the loosely- and tightly-coupled 
estimators, respectively. This performance is adequate for several transportation 
applications but for decimeter-level positioning or detecting disturbances and threat to a 
PNT system, additional sensor data and geospatial information are needed. 
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4 PNT Integrity Monitoring 

4.1 Introduction 

We will study modern receiver autonomous integrity monitoring (RAIM) techniques which 
should harness significant benefits from the GPS III extended data structure as well as 
from using multiple GNSS constellations. Since certain data messages are not yet 
declared operational and constellations are incomplete, these efforts will be primarily 
based on simulations. In addition, we will extend RAIM to incorporate terrestrial and LEO 
satellite SOPs when available. Scenarios in various combinations, including multipath, 
signal blockage, and jamming and spoofing will be evaluated. Since the team has a full 
spectrum of GPS/GNSS receivers, actual tests will be conducted to assess the developed 
methodologies and practices for standardized testing. These tests, including laboratory 
and in situ sessions, will be primarily land vehicle based. The outcome of these 
investigations will be in a sense complementary to the DHS Best Practices document, 
which is focused on static receiver deployment and protection with guidelines for users and 
manufacturers. This activity was originally reported in [8-11]. 

4.2 Integrity 

Integrity was introduced in aviation field to evaluate the performance of GNSS with the 
help of Airborne Based Augmentation System (ABAS), Ground Based Augmentation 
System (GBAS), and Satellite Based Augmentation System (SBAS). When GNSS range 
measurements are exclusively used, ABAS is usually referred as Receiver Autonomous 
Integrity Monitoring (RAIM) (Zhu et al., 2018). With the advancement of autonomous 
driving, the integrity monitoring of GNSS navigation for ground vehicles has become more 
and more important, especially for the safety- and liability-critical applications. Advanced 
Receiver Autonomous Integrity Monitoring (ARAIM) is being developed in recent years to 
incorporate multiple frequencies and satellite constellations across all major GNSS 
constellations (Blanch et al., 2013, 2017, 2019b). 
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Table 5 Basic characteristics of RAIM and ARAIM. 

RAIM ARAIM 

Signals GPS L1 CA only 
GPS L1-L5 + Galileo E1-E5a 
(at least) 

Integrity parameters Fixed 
Broadcast in Integrity 
Support Message (ISM)  

Fault probabilities Fixed Variable 

Integrity assessment 
Fixed probability of missed 

-3 
detection (10 ) 

Variable probability of 
missed detection 

Effect of temporal 
decorrelation 

Only discussed for false alert rate 
Taken into account explicitly 
(integrity and continuity) 

Exclusion function effect 
on integrity 

Probability of missed detection is 
not modified to account for the 
exclusion function 

Integrity risk explicitly 
includes the effect of 
exclusion 

The receiver level integrity monitoring is mostly solved as a hypothesis testing problem 
(Lee, 1986; Brown and Chin, 1997; Joerger et al., 2014; Yang and Xu, 2016; Maaref et 
al., 2018; Zhu et al., 2020; El-Mowafy et al., 2020), though there are recent efforts to 
employ machine learning in the developed algorithm (Temple, 2006), aiming to be able to 
meet the integrity requirements of Category I, II, and III precision approach using 
combined GPS and Galileo constellation. In the conventional hypothesis testing technique 
(Joerger et al., 2014), the least-squares-residual-based (RB) and solution separation (SS) 
are the two widely used RAIM methods in safety-critical applications. RB RAIM uses a 
single test statistic for fault detection in the measurement domain, whereas the SS RAIM 
adopts multiple test statistics tailored to the fault hypothesis and to the state of interest in 
the position domain. The superiority of SS RAIM, however, is outweighed by conservative 
assumptions for computation efficiency and ultimately RB RAIM provides tighter bounds 
on integrity risk. The two typical implementations are the snapshot approach that is 
usually based on the residuals of least squares (LS) estimator for observations of the 
current epoch, and the other is the sequential approach, which is usually based on 
innovation of Kalman filter (KF) that uses both current and past observations (Zhu et al., 
2020). 

4.3 Detection/Mitigation Approaches 

Looking at the integrity monitoring problem from a PNT system level perspective, there 
are several options for detecting and mitigating anomalies, either unintentional or 
intentional ones. A somewhat high-level classification is provided below: 

1. GPS/GNSS system level 

 Signal structure (authentication) 

 Signal power and diversity in GNSS 

2. GPS/GNSS receiver level 

 Antenna design 

 Receiver integrity monitoring (RAIM/ARAIM) 
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 Various integrity parameters and events 

3. PNT system level 

 IMU integration 

 Environment-based approaches 

 Sensor integration (onboard) 

 SooS technologies (RF) 

 Using geospatial data (maps, for example, Google’s Live View) 

 Collaborative navigation/cooperative sensing (in inverse) 

The integrity monitoring support provided on the system level (1) is beyond user control, 
and it is part of the continuous modernization effort of GNSS. The receiver level integrity 
monitoring (2) has been addressed elsewhere. Here the focus primarily is on the PNT 
system level (3), which has many options. The classical navigation sensor integration is 
based on fusing GPS/IMU data and, more recently, additional sensors are included, such 
as imaging, RF and SooS technologies. Some of these topics are discussed in other 
sections of this report. Here we consider the exploitation of the collaborative navigation 
concept, which represents the next level of generalization of the sensor integration by 
integrating sensors deployed on multiple platforms. In most applications, in particular 
normal vehicle traffic on the road network, it is very rare that platforms navigate alone. In 
fact, the opposite is truer that the roads are overloaded and, many times, congested. 
Therefore, collaboration of vehicles is necessary to improve safety and increase traffic 
flow. 

The collaborative navigation concept introduced earlier was founded on the idea to share 
navigation information for a group of platforms sharing close proximity with the objective 
to achieve better navigation for the all the platforms. However, it can be used in the other 
direction, namely checking individual platform navigation solutions against a joint 
navigation solution based on a group of platforms, and thus detecting any anomalies and, 
potentially, offering mitigation. 

4.4 Exploiting of collaborative navigation 

There are multiple ways how the geometric strength of a geodetic network formed by 
platforms can be exploited for detecting PNT solution anomalies caused by RF 
interference, such as lack of GNSS signals, jamming and spoofing. The concept for a 
simple example is shown in Figure 22, where four platforms form a network and one of 
the vehicles PNT solution is compromised. The upper row shows that using range data in 
combination with individual platform PNT solution, the spoofed solution will be pulled 
closer to the correct solution at the price of errors introduced at three other solutions; this 
is what the adjustment does, i.e., distributing the differences evenly. Using outlier 
detection techniques, the spoofed node can be detected, provided the shift is large 
enough. In contrast, using a range only solution, the network preserves the correct 
relative positions, but it is floating, i.e., the orientation is unknown with respect to the 
navigation frame. Using graph matching, the spoofed node can be easily detected, and 
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based on that the correct position can be computed using the three correct individual PNT 
solution in combination with the range data. 

Figure 22 Four-platform collaborative navigation with one node spoofed. 

There are several ways to create collaborative navigation solutions, which are listed 
below: 

1. Snapshot/static geodetic approaches: 

 Ordinary least squares (OLS), 

 Weighted least squares (WLS), etc. 

2. Sequential estimators: 

 Navigation filters: 

o Kalman Filters (KF), 

o Extended Kalman filters (EKF),  

o Particle Filters (PF) 

o Multiple Mode Filters, etc. 

 Batch approaches: 

o Least squares “fitting” methods 

o Solvers, e.g., non-linear least squares 

o SLAM 

Group (1) represents a totally independent solution for the relative position of the nodes at 
an epoch (Wang et al., 2022). In contrast, Group 2 uses information from past epochs, 
such as the previous epoch for the classical navigation filters or more previous epochs for 
the batch approaches. Note that Group 2 solutions are based on using the local PNT 
solutions with the range measurements. 

30 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Literature Review of PNT and GNSS Threats and Vulnerabilities to HATS 

4.5 Single outlier detection 

To assess the performance of the collaborative navigation approach for single outlier 
detection, the centralized integration architecture was adopted by assuming the GNSS 
solution of four vehicles as well as the V2V and V2I range measurements are available to 
a central EKF without any communication delay. GNSS solutions of four vehicles, V2I 
ranges from vehicle A, and V2V ranges among four vehicles are the measurements for 
the EKF. The state vector includes two dimensional positions, velocities, and 
accelerations of these four vehicles. Figure 23 shows the trajectory of a test run by 
vehicle A (GPSVan) and the V2I anchor nodes based on a dataset acquired at a parking 
lot of OSU (Retscher et al., 2020). 
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Figure 23 GNSS trajectory of GPSVan, UWB beacon locations, and the initial locations of 

the test vehicles. 

From a typical test run, a period of 42.6 seconds, 214 epochs, of data was selected for 
this study. As the UWB measurement success rate was around 50%, V2V ranges were 
partially simulated from GNSS solutions with a standard deviation of 0.05 m. There were 
missing V2I ranges, which were also simulated at the same level of accuracy from the 
known locations of UWB beacons and vehicle A’s GNSS solution. 

The collaborative navigation results are depicted in Figure 24 and then used as reference 
for the test scenarios discussed below. Since the GNSS solutions are from standard point 
positioning, the differences between collaborative navigation and GNSS solutions are at 
sub-meter level as shown in Table 6 Statistics of differences between collaborative navigation 
and GNSS solution [m].. 
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Figure 24 GNSS trajectory of GPSVan, UWB beacon locations, and the initial locations of 
the test vehicles. 

Table 6 Statistics of differences between collaborative navigation and GNSS solution [m]. 

Vehicle Min Max Mean STD 

A 0.01 0.07 0.06 0.07 
B 0.01 0.26 0.06 0.06 
C 0.02 0.18 0.06 0.06 
D 0.01 0.15 0.06 0.07 

To simulate a spoofing attack case like in (Rustamov et al., 2020), a constant bias of 1.0 
m was added to each component of vehicle D’s GNSS solution starting from the 57th 

epoch for 100 epochs, and then it is used to derive the collaborative navigation with the 
other vehicles’ GNSS solution as well as using V2I and V2V ranges. The reason to use 1 
m bias was to address a challenging case, as detecting larger values is, obviously, easier 
in general. As seen from Figure 25 and Table 7 Statistics of differences between collaborative 
navigation for biased case and the reference solution [m]., using the information of other 
vehicles and the range measurements, the positioning error of vehicle D has been 
restricted to less than 0.2 m. After the bias-added periods, the solution gradually 
converged back to the reference solution. Obviously, any added biases larger than 1.0 m 
in GNSS solutions can be detected with precise inter-vehicle range measurements. 
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Figure 25 Differences between collaborative navigation for the biased case and reference 
solution. 

Table 7 Statistics of differences between collaborative navigation for biased case and the 
reference solution [m]. 

Vehicle Min Max Mean STD 

A 0.01 0.09 0.03 0.03 
B 0.00 0.07 0.02 0.02 
C 0.00 0.08 0.02 0.02 
D 0.01 0.11 0.03 0.03 

To investigate the situation that the GNSS receiver produces noisy positioning results due 
to interference, random noise with zero mean and variance of 1.0 m was added to each 
component of the GNSS solution of vehicle D. The collaborative navigation solution for 
this case is presented in Figure 26 and Table 8 Statistics of differences between collaborative 
navigation for noisy case and the reference solution [m].. Clearly, the collaborative navigation 
helps decrease the position error for vehicle D with the maximum 2D distance to the 
reference solution being below 0.5 m. Comparing to the result of the constant bias case 
above, however, the increased noise level creates challenges for detecting and mitigating 
GNSS anomalies. 
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Figure 26 Differences between collaborative navigation for the noisy case and reference 
solution. 

Table 8 Statistics of differences between collaborative navigation for noisy case and the 
reference solution [m]. 

Vehicle Min Max Mean STD 

A 0.00 0.18 0.05 0.05 
B 0.00 0.20 0.04 0.04 
C 0.00 0.43 0.07 0.07 
D 0.00 0.48 0.08 0.07 

Note that decreasing the weight of D’s GNSS solution for the whole duration of the 
affected periods before deriving the collaborative navigation, the offsets of D’s solution 
can be limited to around 0.1 m. Obviously, techniques in the RF domain, such as C/N₀ 
monitoring and received power monitoring as in (Humphreys, 2017), should be combined 
to detect and mitigate the anomalies for this case. 

In the presence of strong interference, most of the GNSS receivers may lose tracking of 
the satellite signals and produce no positioning results. There are some high-end, 
interference resistant GNSS receivers, however, that may still be able to position. This 
case is also investigated by assuming the GNSS solution is only available on vehicle A 
and then trying to derive the navigation solution for the other vehicles based on the V2V 
range measurements. The results are plotted in Figure 27 and tabulated in Table 9 
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Statistics of differences between collaborative navigation for single anchor case and the reference 
solution [m]., in which the differences to the reference solution are less than 1.2 m for B 
and 3.0 m for C and D; clearly demonstrating that the collaborative navigation can 
generate the navigation solution for the other three vehicles during the outage periods, 
which is rather unreal in single platform navigation without aiding from other sensors, 
such as IMUs and odometers/speedometers. 

Figure 27 Differences between collaborative navigation for single anchor case and 
reference solution. 

Table 9 Statistics of differences between collaborative navigation for single anchor case 
and the reference solution [m]. 

Vehicle Min Max Mean STD 

A 0.10 0.39 0.30 0.04 
B 0.13 0.12 0.89 0.17 
C 0.14 2.59 2.00 0.52 
D 0.11 2.40 1.89 0.45 

Note that the solution differences seem to be larger than expected at first glance given 
the ranging accuracy of the V2V measurements. The reason for getting better results for 
vehicle B is that it was moving next to the side of vehicle A and thus could be positioned 
better. Vehicles C and D were behind the other two vehicles, and consequently were fairly 
well-positioned in the travel direction, while due to less favorable geometry their 
positioning in the lateral direction was noticeable less accurate. See the Yc and Yd vs Xc 
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and Xd Figure 27 and Table 9 Statistics of differences between collaborative navigation for 
single anchor case and the reference solution [m]. and consider that the vehicles moved 
approximately in the X direction. 

Finally, it important to note that collaborative positioning in this case provides only relative 
positions, i.e., the solution is rotation invariant to vehicle A, and thus additional 
information is needed to orient the three vehicles’ solution in the right direction. 

4.6 Multiple outlier detection 

The efficiency of detecting anomalies of individual PNT solutions in a collaborative 
navigation environment depends on the number of nodes in the network and the number 
of outliers vs good solutions. For example, for a three-node network, there must be two 
good solutions to detect the outlier solution. For larger networks, however, multiple outlier 
nodes can be detected too. We investigated the performance of detecting multiple outliers 
in PNT solutions in collaborative navigation using a combination of global test for outlier 
detection and the Akaike Information Criterion (AIC) method for outlier identification. 

Multiple outlier detection is normally implemented as a consecutive execution of data 
snooping to detect one outlier at a time (Baarda, 1968). The process involves detection, 
identification, and rejection of single outliers (Lehmann and Losler; 2016) and down-
weighting of the affected observations (Zhu et al., 2020). A global test is normally taken to 
detect whether there are some outliers residing in the observations in a Gauss-Markov 
model (GMM) (Schaffrin, 1999). Under null hypothesis, the global test statistic can be 
formulated, which follows a χ2 distribution with a degree of observations minus number of 
adjusted parameters. When a threshold defined for a given probability is exceeded, the 
null hypothesis is rejected. The single outlier detection method can be extended into a 
multiple hypothesis test process which follows an F distribution (Schaffrin and Vang, 
1994), and then based on the selected significance level, outliers are flagged. It is known 
that multiple outlier detection has swamping and masking side effects. The swamping 
effect tends to report more outliers than actually present, whereas multiple outliers can 
mask each other so that they are hardly detectable. Methods other than hypothesis test 
have been studied and applied for outlier detection (Lehmann and Losler, 2016). 

A model selection criterion evaluates whether a fitted model achieves an optimal balance 
between fidelity to the data and model complexity among a candidate collection 
(Cavanaugh and Neath, 2019). Akaike Information Criterion (AIC), introduced in (Akaike, 
1973), was the first model selection criterion and continues to be one of the most widely 
known and used model selection tools in statistical practice. The optimal fitting model is 
identified by the minimum values of AIC, which includes a goodness-of-fit term and a 
penalty term. When the sample size is large and the model dimension is relatively small, 
AIC is an asymptotically unbiased estimator of the expected Kullback discrepancy, a 
measure of similarity between the generating model of the data and a candidate model. 
For settings with small sample size and relatively large model dimension, AIC is 
substantially negatively biased, which leads to a further development of AIC, AICc 
(corrected AIC) with a refined penalty term (Cavanaugh and Neath, 2019). 
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Multiple outlier detection can be regarded as a problem of model selection on the null 
model free of outliers and different alternative models of outliers. Accordingly, AIC has 
been employed to detect multiple outliers in the scientific community (Kitagawa, 1979; 
Meloun et al., 2010; Cucina et al., 2014; Kornacki, 2014; Lehmann and Lösler, 2016). The 
benefits of using AIC to detect outliers are summarized as elegantly unifying the problems 
of determining the number of outliers and identifying the outliers, fitting various situations 
(single and multiple outliers, one-sided and two-sided outliers), requiring no input of 
significance level value, and avoiding masking effects. 

4.7 Test results for the 2D case 

A five-vehicle test dataset was used to study the performance of the AIC method for 
multiple outlier identification. The platforms had various sensor configuration. Vehicles 
A1, A2, and A3 had GNSS and tactical-grade IMU, then node B1 had GNSS and 
consumer-grade IMU, whereas node C1 had only consumer-grade IMU. The standard 
deviation of GNSS solution was 1.0 m, and the standard deviation of range 
measurements was 0.05 m. For simulations, the GNSS solution of A1 and A2 and the 
ranges between A3 and B1 were added with different bias levels to simulate various 
outlier scenarios. The details of the simulated outliers are listed in Table 10 Simulated 
outliers for the 2D dataset.; the indicator is used to identify the measurements. The 
evaluation used three methods for comparison: 

 AIC only: The AIC method used for outlier detection and identification. The 
observations identified to have outliers are excluded from collaborative navigation. 

 Global test and AIC: The global test in hypothesis test method is used to detect 
outliers, and AIC method is used to identify outliers. The observations identified to 
have outliers are excluded from collaborative navigation. 

 Outlier mitigation: The global test and AIC method as above is used for outlier 
detection and identification. The observations identified to have outliers are 
corrected with the outlier estimates and then used in collaborative navigation. 

Table 10 Simulated outliers for the 2D dataset. 

Epoch Measurements Magnitude [m] Indicator 

131-190 GNSS (X, Y) of A1 
Range of A3‐B1 

20 
20 

1 
13 

201-260 GNSS (X, Y) of A2 
Range of A3-B1 

10 
15 

2 
13 

271-300 GNSS (X, Y) of A1 12 1 
341-400 GNSS (X, Y) of A2 10 2 
411-470 GNSS (X, Y) of A1 8 1 
481-540 GNSS (X, Y) of A2 6 2 
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The navigation results without any outlier detection are shown in Fig. 4.6. Not surprisingly, 
the mean errors of all nodes are around 4.0 m, and the maximum error can be as high as 
15 m. 

Outlier detection can also be implemented in the measurement update of the Kalman filter 
itself. The test statistics can be the Normalized Innovation Squared (NIS) as adopted in 
(Zhu et al., 2020). Figure 28 illustrates the NIS for this case, which has large values in 
outlier periods. With a carefully selected threshold, some outliers can be detected. 
Nevertheless, the identification of the outliers is still needed as the next step is to 
ultimately remove the effects of outliers. 

Figure 28 Positioning errors of collaborative navigation without outlier detection. 
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Figure 29 NIS of collaborative navigation without outlier detection. 

Using the AIC method for outlier detection and identification, the AICc values are 
computed for the outlier free and alternative models with different outlier assumptions. 
The model that has the minimum AICc values is selected as the correct model. If the 
selected model is an alternative model, the observations that are suggested to have 
outliers are excluded from the collaborative navigation. 

The collaborative navigation solution is shown in Figure 29. The identified outliers are 
depicted in Figure 30Figure 29. From these figures, it can be seen that outliers larger than 
8.0 m are successfully detected and identified. Moreover, there is no single case of false 
positive error happening for the whole test. Especially for the first outlier period, both 
outliers GNSS and range are correctly detected and identified without input of the total 
number of outliers and the significance level of the hypothesis test. After the exclusion of 
the outliers, the mean errors of collaborative navigation have decreased from around 4.0 
m to around 0.40 m. Interestingly, only 11 of 60 outliers at the 6 m level have been 
detected between epochs 481 and 540, the undetected outliers cause the collaborative 
navigation solution errors increase to 1.95 m by the end of the outlier periods. 
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Figure 30 Positioning errors of collaborative navigation with AIC for outlier detection and 
identification. 
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Figure 31 Identified outliers with the AIC method. 

The presence of undetected outliers is also visible from the NIS plot in Figure 31. In the 
last outlier period, NIS values are generally two times of the values of the other periods, 
which demonstrates its value in outlier detection. However, outlier identification is still 
needed if NIS is used to detect outliers. 

The logic to use the Global Test and AIC approach is that AIC cannot detect smaller 
outliers, as evidenced by the AIC only results above. A significance level of 0.01 was 
selected for the global test, and after the identification, the observations tested to have 
outliers are excluded from collaborative navigation. 
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Figure 32 NIS of collaborative navigation with AIC for outlier detection. 

The collaborative navigation solution errors are illustrated in Figure 32. With the outliers 
being detected and excluded, the mean errors have further decreased to around 0.20 m. 
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Figure 33 Positioning errors of collaborative navigation with combining global test and AIC 
for outlier detection and identification. 

The detected outliers are shown in Figure 33, demonstrating that all outliers have been 
successfully detected and identified. Note that there is a single gap at epoch 512 where 
no outliers are detected. The missed detection can be cross checked with the NIS plot in 
Figure 34, in which a peak of 58 is present in the last outlier period. Utilizing the combined 
method has improved the outlier detection rate from 18.3% to 98.3% for the last outlier 
period. 
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Figure 34 Identified outliers with the combining global test and AIC. 

These results suggest that the global test method may have reached the Minimum 
Detectable Bias (MDB), 6.0 m in this case. Since the noise level of the GNSS solution is 
1.0 m, the MDB of the hypothesis test can be roughly regarded as six times of the 
observation noise. The MDB by AIC seems to be larger than that of the hypothesis test. 
There are a few studies on MDB in hypothesis test, such as (Baarda, 1968; Schaffrin, 
1997; Yang et al., 2013), yet further study is needed to determine the MDB of the AIC 
method, or a better method to calculate the AIC values. 
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Figure 35 NIS of collaborative navigation with combining global test and AIC for outlier 
detection and identification. 

4.8 Test results for the 3D case 

From the May 2022 data acquisition, described earlier, an eight-platform dataset was 
extracted, including four cars (A, B, C, and D), two bicycles (E and F) and two drones (G 
and H). Figure 36 illustrates the reference trajectories of the test. All the processing and 
evaluation steps were similar to the 2D case discussed above. The simulated outliers 
scenarios are listed in Table 11 Simulated outliers for the 3D dataset.. 
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Figure 36 Reference trajectories used for simulated multiple outlier detection and 
identification. 
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Table 11 Simulated outliers for the 3D dataset. 

Epoch Measurements Magnitude [m] Indicator 

101-200 GNSS (X, Y, Z) of A 
GNSS (X, Y, Z) of B 

Range C-D 

10.0 
10.0 
10.0 

s 
2 

22 
301-400 GNSS (X, Y, Z) of B 

Range C-D 
8.0 

10.0 
2 

22 
601-700 GNSS (X, Y, Z) of B 6.0 2 
701-800 GNSS (X, Y, Z) of A 6.0 s 
801-900 GNSS (X, Y, Z) of B 4.0 2 

901-1000 GNSS (X, Y, Z) of A 4.0 s 
1101-1200 GNSS (X, Y, Z) of B 2.0 2 
2001-2100 GNSS (X, Y, Z) of A 2.0 s 
2101-2200 GNSS (X, Y, Z) of B 1.0 2 
2201-2300 GNSS (X, Y, Z) of A 1.0 s 
2301-2400 GNSS (X, Y, Z) of B 0.3 2 
2401-2500 GNSS (X, Y, Z) of A 0.3 s 

The collaborative navigation solution errors are shown in Figure 37. Not surprisingly the 
maximum errors can be as high as 12 m for the outlier epochs, and the mean errors are 
around 1.2 m for vehicles A and B. In outlier free periods, the maximum and mean errors 
are less than 0.3 m and 0.1 m, respectively, for all platforms. 

Figure 37 Positioning errors of collaborative navigation without outlier detection for a 3D 
dataset. 
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Using the combined global test and AIC method for outlier detection and identification, 
collaborative navigation solution errors are illustrated in Figure 38. The maximum and 
mean errors of B have been decreased to 2.88 m and 0.17 m, respectively. It is also 
apparent from Figure 38 that the maximum errors are mainly in the vertical direction, 
where the geometry is weak because six out of eight platforms are on the ground 
(obviously, the performance may be improved by integrating IMU measurements). 

The outlier identification result is of more interest here. As depicted in Figure 39, the 
identified outliers confirm with Table 4.8 in terms of times and indicators. There are no 
false positive errors for the whole test. Most importantly, three simultaneous outliers in the 
first outlier period and two in the second have been successfully detected and identified, 
without a prior knowledge of how many outliers residing in the observations. In terms of 
sizes, outliers from 10.0 m to 0.5m have been correctly identified. As the observation 
noises are about 0.05 m, 0.5 m is ten times of the noise level, which confirms the 
assumption of six times of the observation noise as the MDB discussed above. 

Figure 38 Positioning errors of collaborative navigation with combining global test and 
AIC. 
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Figure 39 Identified outliers with combining global test and AIC. 

Based on our test results on two datasets (2D and 3D) with known truths, the acclaimed 
attributes of effectiveness and simplicity of the AIC method can be confirmed. This 
method solves the problem of outlier detection and outlier identification all at once. 
Moreover, there is no need to assign a significance level and the total number of outliers 
in the detection procedure. For the tests on a 2D data set with observation noises of 1.0 
m, all outliers larger than 6.0m have been successively detected and identified, including 
a set of two simultaneous GNSS and range outliers. Combining AIC with the global test 
offers further improvements in multiple outlier detection; in particular, detecting relatively 
smaller outliers. 
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